Stochastic Models of Very High-Rate (50 Hz) GPS/BeiDou Code and Phase Observations
نویسندگان
چکیده
In recent years, very high-rate (10–50 Hz) Global Navigation Satellite System (GNSS) has gained a rapid development and has been widely applied in seismology, natural hazard early warning system and structural monitoring. However, existing studies on stochastic models of GNSS observations are limited to sampling rates not higher than 1 Hz. To support very high-rate GNSS applications, we assess the precisions, cross correlations and time correlations of very high-rate (50 Hz) Global Positioning System (GPS)/BeiDou code and phase observations. The method of least-squares variance component estimation is applied with the geometry-based functional model using the GNSS single-differenced observations. The real-data experimental results show that the precisions are elevation-dependent at satellite elevation angles below 40◦ and nearly constant at satellite elevation angles above 40◦. The precisions of undifferenced observations are presented, exhibiting different patterns for different observation types and satellites, especially for BeiDou because different types of satellites are involved. GPS and BeiDou have comparable precisions at high satellite elevation angles, reaching 0.91–1.26 mm and 0.13–0.17 m for phase and code, respectively, while, at low satellite elevation angles, GPS precisions are generally lower than BeiDou ones. The cross correlation between dual-frequency phase is very significant, with the coefficients of 0.773 and 0.927 for GPS and BeiDou, respectively. The cross correlation between dual-frequency code is much less significant, and no correlation can be found between phase and code. Time correlations exist for GPS/BeiDou phase and code at time lags within 1 s. At very small time lags of 0.02–0.12 s, time correlations of 0.041–0.293 and 0.858–0.945 can be observed for phase and code observations, respectively, indicating that the correlations in time should be taken into account in very high-rate applications.
منابع مشابه
Iranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps
Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...
متن کاملBDS code bias periodical mitigation by low-pass filtering and its applications in precise positioning
The code-phase divergences, which are minimal for GPS, GLONASS, and Galileo satellites, are commonly found in BeiDou Navigation Satellite System (BDS) Geostationary Orbit (GEO), Inclined GeoSynchronous Orbit (IGSO) and Medium Earth Orbit (MEO) satellites. Several precise positioning applications which use code observations are severely affected by these code biases. We present an analysis of co...
متن کاملAn Analytical Model for BDS B1 Spreading Code Self-Interference Evaluation Considering NH Code Effects
The short spreading code used by the BeiDou Navigation Satellite System (BDS) B1-I or GPS Coarse/Acquistiion (C/A) can cause aggregately undesirable cross-correlation between signals within each single constellation. This GPS-to-GPS or BDS-to-BDS correlation is referred to as self-interference. A GPS C/A code self-interference model is extended to propose a self-interference model for BDS B1, t...
متن کاملGPS and BeiDou Differential Code Bias Estimation Using Fengyun-3C Satellite Onboard GNSS Observations
Differential code biases (DCBs) are important parameters in GNSS (Global Navigation Satellite System) applications such as positioning as well as ionosphere remote sensing. In comparison to the conventional approach, which utilizes ground-based observations and parameterizes global ionosphere maps together with DCBs, a method is presented for GPS and BeiDou system (BDS) satellite DCB estimation...
متن کاملTriple-Frequency Code-Phase Combination Determination: A Comparison with the Hatch-Melbourne-Wübbena Combination Using BDS Signals
Considering the influence of the ionosphere, troposphere, and other systematic errors on double-differenced ambiguity resolution (AR), we present an optimal triple-frequency code-phase combination determination method driven by both the model and the real data. The new method makes full use of triple-frequency code measurements (especially the low-noise of the code on the B3 signal) to minimize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017